27 | 37 | 57 | 91 | 20 | 90 | 94 | 66 | 63 | 6 |
21 | 18 | 69 | 38 | 77 | 50 | 72 | 99 | 38 | 78 |
93 | 21 | 65 | 13 | 27 | 39 | 1 | 38 | 87 | 34 |
48 | 60 | 49 | 19 | 83 | 67 | 79 | 11 | 72 | 41 |
82 | 65 | 78 | 55 | 53 | 79 | 2 | 48 | 73 | 69 |
Frequency Distributions
Here are the marks for 50 students:
27 | 37 | 57 | 91 | 20 | 90 | 94 | 66 | 63 | 6 |
21 | 18 | 69 | 38 | 77 | 50 | 72 | 99 | 38 | 78 |
93 | 21 | 65 | 13 | 27 | 39 | 1 | 38 | 87 | 34 |
48 | 60 | 49 | 19 | 83 | 67 | 79 | 11 | 72 | 41 |
82 | 65 | 78 | 55 | 53 | 79 | 2 | 48 | 73 | 69 |
Ordered sequence of raw data
6 | 7 | 8 | 10 | 12 | 14 | 20 | 24 | 24 | 25 |
26 | 29 | 32 | 33 | 33 | 33 | 34 | 35 | 39 | 40 |
41 | 41 | 43 | 44 | 46 | 46 | 48 | 48 | 48 | 52 |
60 | 64 | 65 | 66 | 71 | 71 | 76 | 77 | 78 | 78 |
80 | 81 | 84 | 86 | 86 | 88 | 88 | 89 | 91 | 96 |
An ordered list makes it easier to find the highest and lowest values and see the range.
A summary table in which data are arranged into ordered classes or categories to determine the number of observations belonging to each class.
6 | 7 | 8 | 10 | 12 | 14 | 20 | 24 | 24 | 25 |
26 | 29 | 32 | 33 | 33 | 33 | 34 | 35 | 39 | 40 |
41 | 41 | 43 | 44 | 46 | 46 | 48 | 48 | 48 | 52 |
60 | 64 | 65 | 66 | 71 | 71 | 76 | 77 | 78 | 78 |
80 | 81 | 84 | 86 | 86 | 88 | 88 | 89 | 91 | 96 |
Sturges’s Rule
\[\text{Number of classes} = 1+3.3log_{10}(N)\]
Here \(N\) is total number of obervations.
Example:
\[ 1+3.3log_{10}(50) = 6.606\]
\[\text{Number of classes} = 7\]
\[\text{width of interval} = \frac{\text{range}}{k}\]
\[\text{range = maximum - minimum}\]
Example
\[\frac{96-6}{7}=12.86\]
\[\text{c} \approx 13\]
\[6\]
\[6+13 = 19\]
\[19+13=32\]
\[25+13=38\]
\[31+13=44\]
\[37+13=50\]
\[43+13=62\]
CI |
---|
6-18 |
19-31 |
32-44 |
45-57 |
58-70 |
71-83 |
84-96 |
CI | Tally | Frequency |
---|---|---|
6-18 | 6 | |
19-31 | 6 | |
32-44 | 12 | |
45-57 | 6 | |
58-70 | 4 | |
71-83 | 8 | |
84-96 | 8 |
CI | Boundaries | Frequency |
---|---|---|
6-18 | 5.5-18.5 | 6 |
19-31 | 18.5-31.5 | 6 |
32-44 | 31.5-44.5 | 12 |
45-57 | 44.5-57.5 | 6 |
58-70 | 57.5-70.5 | 4 |
71-83 | 70.5-83.5 | 8 |
84-96 | 83.5-96.5 | 8 |
Subtract the first upper class limit from the second lower class limit and divide the difference by 2.
Subtract the value calculated in step 1
from all of the lower class limits
add to all of the upper class limits.
CI | Boundaries | Frequency |
---|---|---|
6-18 | [5.5, 18.5) | 6 |
19-31 | [18.5, 31.5) | 6 |
32-44 | [31.5, 44.5) | 12 |
45-57 | [44.5, 57.5) | 6 |
58-70 | [57.5, 70.5) | 4 |
71-83 | [70.5, 83.5) | 8 |
84-96 | [83.5, 96.5) | 8 |
\[c= \text{difference between successive lower class limits\class boundaries}\]
or
\[c= \text{difference between successive upper class limits\class boundaries}\]
or
\[c= \text{difference between successive upper class boundary and its lower class boundary}\] > Example
\[c=18.5-5.5=31.5-18.5=13\]
\[\text{class mark}=\frac{\text{upper limit} +\text{lower limit}}{2}\]
Example
\[\text{class mark}=\frac{6+18}{2} = 12\]
CI | Boundaries | Mid_point | Frequency |
---|---|---|---|
6-18 | 5.5-18.5 | 12 | 6 |
19-31 | 18.5-31.5 | 25 | 6 |
32-44 | 31.5-44.5 | 38 | 12 |
45-57 | 44.5-57.5 | 51 | 6 |
58-70 | 57.5-70.5 | 64 | 4 |
71-83 | 70.5-83.5 | 77 | 8 |
84-96 | 83.5-96.5 | 90 | 8 |
Compute
Cumulative-frequency distribution
Percentage cumulative distributions
Relative frequency distribution
Relative cumulative frequency distribution
CL | Lower_Boundary | Upper_Boundary | Mid_point | Frequency |
---|---|---|---|---|
-7.5 | 5.5 | -1 | 0 | |
6-18 | 5.5 | 18.5 | 12 | 6 |
19-31 | 18.5 | 31.5 | 25 | 6 |
32-44 | 31.5 | 44.5 | 38 | 12 |
45-57 | 44.5 | 57.5 | 51 | 6 |
58-70 | 57.5 | 70.5 | 64 | 4 |
71-83 | 70.5 | 83.5 | 77 | 8 |
84-96 | 83.5 | 96.5 | 90 | 8 |
96.5 | 109.5 | 103 | 0 |
The total frequency of all values less than the upper class boundary.
Marks | Cumulative_Frequency |
---|---|
5.5 | 0 |
18.5 | 6 |
31.5 | 12 |
44.5 | 24 |
57.5 | 30 |
70.5 | 34 |
83.5 | 42 |
96.5 | 50 |
Less than Ogive
Greater than Ogive
First of all, we have to convert the frequency distribution into a less than cumulative frequency distribution.
Boundaries | Frequency |
---|---|
5.5-18.5 | 6 |
18.5-31.5 | 6 |
31.5-44.5 | 12 |
44.5-57.5 | 6 |
57.5-70.5 | 4 |
70.5-83.5 | 8 |
83.5-96.5 | 8 |
Boundaries | Frequency |
---|---|
less than 18.5 | 6 |
less than 31.5 | 12 |
less than 44.5 | 24 |
less than 57.5 | 30 |
less than 70.5 | 34 |
less than 83.5 | 42 |
less than 96.5 | 50 |
Plot greater than ogive.
First of all, we have to convert the frequency distribution into a greater than cumulative frequency distribution.
Boundaries | Frequency |
---|---|
5.5-18.5 | 6 |
18.5-31.5 | 6 |
31.5-44.5 | 12 |
44.5-57.5 | 6 |
57.5-70.5 | 4 |
70.5-83.5 | 8 |
83.5-96.5 | 8 |
Boundaries | Frequency |
---|---|
greater than or equal 5.5 | 50 |
greater than or equal 18.5 | 44 |
greater than or equal 31.5 | 38 |
greater than or equal 44.5 | 26 |
greater than or equal 57.5 | 20 |
greater than or equal 70.5 | 16 |
greater than or equal 83.5 | 8 |
9 | -20 | 25 | 27 | -6 | 14 | 13 | 2 | 7 | 18 |
18 | 4 | 7 | -1 | 2 | 4 | 4 | 4 | -1 | 5 |
5 | 2 | 26 | -1 | 23 | 12 | 21 | -5 | 5 | 11 |
4 | 13 | 8 | 30 | 14 | 7 | 6 | 18 | 26 | 16 |
17 | 14 | 23 | 16 | 18 | 16 | 16 | 16 | 14 | -19 |
9 | -3 | 10 | -10 | 3 | -10 | 9 | 11 | -6 | 16 |
8 | 11 | 6 | 25 | 9 | 3 | 20 | -8 | -5 | 34 |
-1 | 2 | 10 | 20 | 15 | 13 | 16 | -1 | 20 | 4 |
Construct
Frequency distribution
Histogram
Polygon
Cumulative frequency distribution
Orgive