The seer package provides implementations of a novel framework for forecast model selection using time series features. We call this framework FFORMS (Feature-based FORecast Model Selection). For more details see our paper.

Installation

You could install the stable version on CRAN:

You could install the development version from Github using

# install.packages("devtools")
devtools::install_github("thiyangt/seer")
library(seer)

Usage

The FFORMS framework consists of two main phases: i) offline phase, which includes the development of a classification model and ii) online phase, use the classification model developed in the offline phase to identify “best” forecast-model. This document explains the main functions using a simple dataset based on M3-competition data. To load data,

library(Mcomp)
data(M3)
yearly_m3 <- subset(M3, "yearly")
m3y <- M3[1:2]

FFORMS: offline phase

1. Augmenting the observed sample with simulated time series.

We augment our reference set of time series by simulating new time series. In order to produce simulated series, we use several standard automatic forecasting algorithms such as ETS or automatic ARIMA models, and then simulate multiple time series from the selected model within each model class. sim_arimabased can be used to simulate time series based on (S)ARIMA models.

library(seer)
simulated_arima <- lapply(m3y, sim_arimabased, Future=TRUE, Nsim=2, extralength=6, Combine=FALSE)
simulated_arima
#> $N0001
#> $N0001[[1]]
#> Time Series:
#> Start = 1989 
#> End = 2008 
#> Frequency = 1 
#>  [1]  5668.868  6542.207  7466.705  8324.847  9260.486 10032.907 10719.337
#>  [8] 11320.941 11835.167 12493.835 13056.989 13628.338 14169.156 14539.412
#> [15] 14819.965 15152.648 15627.292 15945.719 16227.329 16418.552
#> 
#> $N0001[[2]]
#> Time Series:
#> Start = 1989 
#> End = 2008 
#> Frequency = 1 
#>  [1]  5481.957  6221.209  6917.356  7649.308  8336.747  8905.919  9391.497
#>  [8]  9998.305 10697.576 11550.239 12577.682 13688.304 14770.110 15974.555
#> [15] 17180.027 18333.412 19379.868 20473.912 21808.690 23307.683
#> 
#> 
#> $N0002
#> $N0002[[1]]
#> Time Series:
#> Start = 1989 
#> End = 2008 
#> Frequency = 1 
#>  [1] 3996.1807 4329.1532 3027.2405 1577.5732 2031.6465 1323.5595 1117.1298
#>  [8]  106.2784  893.8570  840.1284  231.9746   41.6243   77.6831  240.0847
#> [15]  350.9892  690.3885 1332.9075 1730.9342  805.6446 1192.5689
#> 
#> $N0002[[2]]
#> Time Series:
#> Start = 1989 
#> End = 2008 
#> Frequency = 1 
#>  [1] 3471.779 2982.035 3499.798 4746.006 4292.415 4229.446 4786.321 5434.882
#>  [9] 5742.639 6254.893 6090.771 5507.158 6822.260 7162.922 8097.968 7531.619
#> [17] 6828.110 6850.864 6299.119 8441.070

Similarly, sim_etsbased can be used to simulate time series based on ETS models.

simulated_ets <- lapply(m3y, sim_etsbased, Future=TRUE, Nsim=2, extralength=6, Combine=FALSE)
simulated_ets

2. Calculate features based on the training period of time series.

Our proposed framework operates on the features of the time series. cal_features function can be used to calculate relevant features for a given list of time series.

library(tsfeatures)
M3yearly_features <- seer::cal_features(yearly_m3, database="M3", h=6, highfreq = FALSE)
head(M3yearly_features)
#> # A tibble: 6 x 25
#>   entropy lumpiness stability hurst trend spikiness linearity curvature e_acf1
#>     <dbl>     <dbl>     <dbl> <dbl> <dbl>     <dbl>     <dbl>     <dbl>  <dbl>
#> 1   0.568         0         0 0.971 0.995   2.37e-7     3.58      0.424  0.412
#> 2   0.745         0         0 0.947 0.869   1.79e-4     2.05     -2.08   0.324
#> 3   0.423         0         0 0.949 0.865   1.93e-4     1.75     -2.26   0.457
#> 4   0.513         0         0 0.949 0.853   3.68e-4     2.87     -1.25   0.281
#> 5   0.553         0         0 0.855 0.586   1.27e-3    -0.765    -1.77   0.192
#> 6   0.709         0         0 0.964 0.964   2.17e-5     3.56     -0.574  0.181
#> # … with 16 more variables: y_acf1 <dbl>, diff1y_acf1 <dbl>, diff2y_acf1 <dbl>,
#> #   y_pacf5 <dbl>, diff1y_pacf5 <dbl>, diff2y_pacf5 <dbl>, nonlinearity <dbl>,
#> #   lmres_acf1 <dbl>, ur_pp <dbl>, ur_kpss <dbl>, N <int>, y_acf5 <dbl>,
#> #   diff1y_acf5 <dbl>, diff2y_acf5 <dbl>, alpha <dbl>, beta <dbl>

Calculate features from the simulated time series in the step 1

features_simulated_arima <- lapply(simulated_arima, function(temp){
    lapply(temp, cal_features, h=6, database="other", highfreq=FALSE)})
fea_sim <- lapply(features_simulated_arima, function(temp){do.call(rbind, temp)})
do.call(rbind, fea_sim)
#> # A tibble: 4 x 25
#>   entropy lumpiness stability hurst trend spikiness linearity curvature  e_acf1
#> *   <dbl>     <dbl>     <dbl> <dbl> <dbl>     <dbl>     <dbl>     <dbl>   <dbl>
#> 1   0.303         0         0 0.973 0.999   4.18e-9      3.59   -0.342   0.353 
#> 2   0.512         0         0 0.971 0.998   1.30e-8      3.62    0.341   0.741 
#> 3   0.802         0         0 0.956 0.916   1.14e-4     -3.16    0.884  -0.106 
#> 4   0.623         0         0 0.955 0.900   1.22e-4      3.48   -0.0603 -0.0715
#> # … with 16 more variables: y_acf1 <dbl>, diff1y_acf1 <dbl>, diff2y_acf1 <dbl>,
#> #   y_pacf5 <dbl>, diff1y_pacf5 <dbl>, diff2y_pacf5 <dbl>, nonlinearity <dbl>,
#> #   lmres_acf1 <dbl>, ur_pp <dbl>, ur_kpss <dbl>, N <int>, y_acf5 <dbl>,
#> #   diff1y_acf5 <dbl>, diff2y_acf5 <dbl>, alpha <dbl>, beta <dbl>

3. Calculate forecast accuracy measure(s)

fcast_accuracy function can be used to calculate forecast error measure (in the following example MASE) from each candidate model. This step is the most computationally intensive and time-consuming, as each candidate model has to be estimated on each series. In the following example ARIMA(arima), ETS(ets), random walk(rw), random walk with drift(rwd), standard theta method(theta) and neural network time series forecasts(nn) are used as possible models. In addition to these models following models can also be used in the case of handling seasonal time series,

  • snaive: seasonal naive method
  • stlar: STL decomposition is applied to the time series and then seasonal naive method is used to forecast seasonal component. AR model is used to forecast seasonally adjusted data.
  • mstlets: STL decomposition is applied to the time series and then seasonal naive method is used to forecast seasonal component. ETS model is used to forecast seasonally adjusted data.
  • mstlarima: STL decomposition is applied to the time series and then seasonal naive method is used to forecast seasonal component. ARIMA model is used to forecast seasonally adjusted data.
  • tbats: TBATS models
tslist <- list(M3[[1]], M3[[2]])
accuracy_info <- fcast_accuracy(tslist=tslist, models= c("arima","ets","rw","rwd", "theta", "nn"), database ="M3", cal_MASE, h=6, length_out = 1, fcast_save = TRUE)
accuracy_info
#> $accuracy
#>         arima       ets       rw       rwd    theta        nn
#> [1,] 1.566974 1.5636089 7.703518 4.2035176 6.017236 2.3302899
#> [2,] 1.698388 0.9229687 1.698388 0.6123443 1.096000 0.2797531
#> 
#> $ARIMA
#> [1] "ARIMA(0,2,0)" "ARIMA(0,1,0)"
#> 
#> $ETS
#> [1] "ETS(M,A,N)" "ETS(M,A,N)"
#> 
#> $forecasts
#> $forecasts$arima
#>         [,1] [,2]
#> [1,] 5486.10 4230
#> [2,] 6035.21 4230
#> [3,] 6584.32 4230
#> [4,] 7133.43 4230
#> [5,] 7682.54 4230
#> [6,] 8231.65 4230
#> 
#> $forecasts$ets
#>          [,1]     [,2]
#> [1,] 5486.429 4347.678
#> [2,] 6035.865 4465.365
#> [3,] 6585.301 4583.052
#> [4,] 7134.737 4700.738
#> [5,] 7684.173 4818.425
#> [6,] 8233.609 4936.112
#> 
#> $forecasts$rw
#>         [,1] [,2]
#> [1,] 4936.99 4230
#> [2,] 4936.99 4230
#> [3,] 4936.99 4230
#> [4,] 4936.99 4230
#> [5,] 4936.99 4230
#> [6,] 4936.99 4230
#> 
#> $forecasts$rwd
#>         [,1]     [,2]
#> [1,] 5244.40 4402.227
#> [2,] 5551.81 4574.454
#> [3,] 5859.22 4746.681
#> [4,] 6166.63 4918.908
#> [5,] 6474.04 5091.135
#> [6,] 6781.45 5263.362
#> 
#> $forecasts$theta
#>         [,1]     [,2]
#> [1,] 5085.07 4321.416
#> [2,] 5233.19 4412.843
#> [3,] 5381.31 4504.269
#> [4,] 5529.43 4595.696
#> [5,] 5677.55 4687.122
#> [6,] 5825.67 4778.549
#> 
#> $forecasts$nn
#>          [,1]     [,2]
#> [1,] 5518.961 4791.264
#> [2,] 6086.792 5061.226
#> [3,] 6584.238 5151.775
#> [4,] 6970.942 5177.587
#> [5,] 7239.697 5184.567
#> [6,] 7410.435 5186.427

4. Construct a dataframe of input:features and output:lables to train a random forest

prepare_trainingset can be used to create a data frame of input:features and output: labels.

# steps 3 and 4 applied to yearly series of M1 competition
data(M1)
yearly_m1 <- subset(M1, "yearly")
accuracy_m1 <- fcast_accuracy(tslist=yearly_m1, models= c("arima","ets","rw","rwd", "theta", "nn"), database ="M1", cal_MASE, h=6, length_out = 1, fcast_save = TRUE)
features_m1 <- cal_features(yearly_m1, database="M1", h=6, highfreq = FALSE)

# prepare training set
prep_tset <- prepare_trainingset(accuracy_set = accuracy_m1, feature_set = features_m1)

# provides the training set to build a rf classifier
head(prep_tset$trainingset)
#> # A tibble: 6 x 26
#>   entropy lumpiness stability hurst trend spikiness linearity curvature  e_acf1
#>     <dbl>     <dbl>     <dbl> <dbl> <dbl>     <dbl>     <dbl>     <dbl>   <dbl>
#> 1   0.442   0.0400      0.977 0.985 0.985   1.32e-6      4.46    0.705  -0.0603
#> 2   0.363   0.0790      0.894 0.988 0.989   1.54e-6      4.47    0.613   0.272 
#> 3   0.379   0.0160      0.858 0.987 0.989   1.13e-6      4.60    0.695   0.172 
#> 4   0.363   0.00201     1.32  0.982 0.957   8.96e-6      4.48    0.0735 -0.396 
#> 5   0.156   0.00112     0.446 0.993 0.973   1.80e-6      5.77    1.21    0.0113
#> 6   0.441   0.00774     0.578 0.986 0.975   3.31e-6      4.75    0.748  -0.385 
#> # … with 17 more variables: y_acf1 <dbl>, diff1y_acf1 <dbl>, diff2y_acf1 <dbl>,
#> #   y_pacf5 <dbl>, diff1y_pacf5 <dbl>, diff2y_pacf5 <dbl>, nonlinearity <dbl>,
#> #   lmres_acf1 <dbl>, ur_pp <dbl>, ur_kpss <dbl>, N <int>, y_acf5 <dbl>,
#> #   diff1y_acf5 <dbl>, diff2y_acf5 <dbl>, alpha <dbl>, beta <dbl>,
#> #   classlabels <chr>

# provides additional information about the fitted models
head(prep_tset$modelinfo)
#> # A tibble: 6 x 4
#>   ARIMA_name              ETS_name   min_label model_names            
#>   <chr>                   <chr>      <chr>     <chr>                  
#> 1 ARIMA(0,1,0) with drift ETS(A,A,N) ets       ETS(A,A,N)             
#> 2 ARIMA(0,1,1) with drift ETS(M,A,N) rwd       rwd                    
#> 3 ARIMA(0,1,2) with drift ETS(M,A,N) ets       ETS(M,A,N)             
#> 4 ARIMA(1,1,0) with drift ETS(M,A,N) rwd       rwd                    
#> 5 ARIMA(0,1,1) with drift ETS(M,A,N) arima     ARIMA(0,1,1) with drift
#> 6 ARIMA(1,1,0) with drift ETS(M,A,N) ets       ETS(M,A,N)

FFORMS: online phase is activated.

5. Train a random forest and predict class labels for new series (FFORMS: online phase)

build_rf in the seer package enables the training of a random forest model and predict class labels (“best” forecast-model) for new time series. In the following example we use only yearly series of the M1 and M3 competitions to illustrate the code. A random forest classifier is build based on the yearly series on M1 data and predicted class labels for yearly series in the M3 competition. Users can further add the features and classlabel information calculated based on the simulated time series.

rf <- build_rf(training_set = prep_tset$trainingset, testset=M3yearly_features,  rf_type="rcp", ntree=100, seed=1, import=FALSE, mtry = 8)
#> Warning in if (testset == FALSE) {: the condition has length > 1 and only the
#> first element will be used

# to get the predicted class labels
predictedlabels_m3 <- rf$predictions
table(predictedlabels_m3)
#> predictedlabels_m3
#>                 ARIMA            ARMA/AR/MA       ETS-dampedtrend 
#>                    68                     4                     0 
#> ETS-notrendnoseasonal             ETS-trend                    nn 
#>                     2                    28                    12 
#>                    rw                   rwd                 theta 
#>                     3                   519                     4 
#>                    wn 
#>                     5

# to obtain the random forest for future use
randomforest <- rf$randomforest

6. Generate point foecasts and 95% prediction intervals

rf_forecast function can be used to generate point forecasts and 95% prediction intervals based on the predicted class labels obtained in step

forecasts <- rf_forecast(predictions=predictedlabels_m3[1:2], tslist=yearly_m3[1:2], database="M3", function_name="cal_MASE", h=6, accuracy=TRUE)

# to obtain point forecasts
forecasts$mean
#>          [,1]     [,2]     [,3]     [,4]     [,5]     [,6]
#> [1,] 5486.429 6035.865 6585.301 7134.737 7684.173 8233.609
#> [2,] 4402.227 4574.454 4746.681 4918.908 5091.135 5263.362

# to obtain lower boundary of 95% prediction intervals
forecasts$lower
#>          [,1]     [,2]     [,3]     [,4]     [,5]     [,6]
#> [1,] 4984.162 4893.098 4629.135 4199.745 3606.858 2848.873
#> [2,] 2941.377 2430.512 2028.738 1677.572 1355.680 1052.743

# to obtain upper boundary of 95% prediction intervals
forecasts$upper
#>          [,1]     [,2]     [,3]      [,4]      [,5]     [,6]
#> [1,] 5988.696 7178.632 8541.467 10069.729 11761.488 13618.34
#> [2,] 5863.077 6718.396 7464.623  8160.243  8826.589  9473.98

# to obtain MASE
forecasts$accuracy
#> [1] 1.5636089 0.6123443

Notes

Calculation of features for daily series

# install.packages("https://github.com/carlanetto/M4comp2018/releases/download/0.2.0/M4comp2018_0.2.0.tar.gz",
#                 repos=NULL)
library(M4comp2018)
data(M4)
# extract first two daily time series
M4_daily <- Filter(function(l) l$period == "Daily", M4)
# convert daily series into msts objects
M4_daily_msts <- lapply(M4_daily, function(temp){
  temp$x <- convert_msts(temp$x, "daily")
  return(temp)
})
# calculate features
seer::cal_features(M4_daily_msts, seasonal=TRUE, h=14, m=7, lagmax=8L, database="M4", highfreq=TRUE)
#> # A tibble: 4,227 x 26
#>    entropy lumpiness stability hurst trend spikiness linearity curvature e_acf1
#>      <dbl>     <dbl>     <dbl> <dbl> <dbl>     <dbl>     <dbl>     <dbl>  <dbl>
#>  1 0.00950   0.00214     0.621 1.00  0.993  1.09e-10     31.1      3.09   0.976
#>  2 0.211     0.331       0.446 1.00  0.865  2.53e- 8     24.7      1.35   0.986
#>  3 0.610     0.755       0.761 0.999 0.917  4.49e- 6      3.82     4.89   0.318
#>  4 0.741     0.168       0.821 0.996 0.841  3.86e- 6      1.87     6.38   0.290
#>  5 0.281     0.0140      0.991 1.00  0.988  4.64e- 8     11.3      0.878  0.376
#>  6 0.0430    0.00136     0.242 1.00  0.989  1.90e-10     29.8      8.27   0.973
#>  7 0.412     0.247       0.697 0.999 0.845  2.38e- 8     24.1      1.96   0.809
#>  8 0.141     0.0189      1.01  1.00  0.968  2.31e- 9     30.1     -4.98   0.963
#>  9 0.213     0.0275      1.07  1.00  0.954  4.69e- 9     29.3     -6.67   0.963
#> 10 0.438     0.00110     0.974 1.00  0.989  8.77e-10     18.3     -3.60   0.346
#> # … with 4,217 more rows, and 17 more variables: y_acf1 <dbl>,
#> #   diff1y_acf1 <dbl>, diff2y_acf1 <dbl>, y_pacf5 <dbl>, diff1y_pacf5 <dbl>,
#> #   diff2y_pacf5 <dbl>, nonlinearity <dbl>, seas_pacf <dbl>,
#> #   seasonal_strength1 <dbl>, seasonal_strength2 <dbl>, sediff_acf1 <dbl>,
#> #   sediff_seacf1 <dbl>, sediff_acf5 <dbl>, N <int>, y_acf5 <dbl>,
#> #   diff1y_acf5 <dbl>, diff2y_acf5 <dbl>

Calculation of features for hourly series

data(M4)
# extract first two daily time series
M4_hourly <- Filter(function(l) l$period == "Hourly", M4)[1:2]
## convert data into msts object
hourlym4_msts <- lapply(M4_hourly, function(temp){
    temp$x <- convert_msts(temp$x, "hourly")
    return(temp)
})
cal_features(hourlym4_msts, seasonal=TRUE, m=24, lagmax=25L,
                                                         database="M4", highfreq = TRUE)
#> Warning: Unknown columns: `seasonal_strength`
#> # A tibble: 2 x 26
#>   entropy lumpiness stability hurst trend spikiness linearity curvature e_acf1
#>     <dbl>     <dbl>     <dbl> <dbl> <dbl>     <dbl>     <dbl>     <dbl>  <dbl>
#> 1   0.282    0.0110    0.0899 0.999 0.626   1.92e-8      5.33    -3.51   0.958
#> 2   0.284    0.0505    0.109  0.999 0.790   6.39e-9      7.85    -0.152  0.974
#> # … with 17 more variables: y_acf1 <dbl>, diff1y_acf1 <dbl>, diff2y_acf1 <dbl>,
#> #   y_pacf5 <dbl>, diff1y_pacf5 <dbl>, diff2y_pacf5 <dbl>, nonlinearity <dbl>,
#> #   seas_pacf <dbl>, seasonal_strength1 <dbl>, seasonal_strength2 <dbl>,
#> #   sediff_acf1 <dbl>, sediff_seacf1 <dbl>, sediff_acf5 <dbl>, N <int>,
#> #   y_acf5 <dbl>, diff1y_acf5 <dbl>, diff2y_acf5 <dbl>

Forecast combinations based on FFORMS algorithm

# extract only the values for two time series just for illustration
yearly_m1_features <- features_m1[1:2,]
votes.matrix <- predict(rf$randomforest, yearly_m1_features, type="vote")
tslist <- yearly_m1[1:2]
# To identify models and weights for forecast combination
models_and_weights_for_combinations <- fforms_ensemble(votes.matrix, threshold=0.6)
# Compute combination forecast
fforms_combinationforecast(models_and_weights_for_combinations, tslist, "M1", 6)
#> [[1]]
#> [[1]]$mean
#>          [,1]   [,2]     [,3]     [,4]     [,5]     [,6]
#> [1,] 556280.7 594333 632385.3 670437.6 708489.9 746542.3
#> 
#> [[1]]$lower
#>          [,1]     [,2]     [,3]     [,4]     [,5]     [,6]
#> [1,] 495633.6 530117.6 561088.8 588269.7 611931.4 632551.3
#> 
#> [[1]]$upper
#>          [,1]     [,2]     [,3]     [,4]     [,5]     [,6]
#> [1,] 616927.8 658548.4 703681.8 752605.5 805048.5 860533.2
#> 
#> 
#> [[2]]
#> [[2]]$mean
#>          [,1]     [,2]     [,3]     [,4]     [,5]     [,6]
#> [1,] 400921.2 417802.4 434683.5 451564.7 468445.9 485327.1
#> 
#> [[2]]$lower
#>          [,1]     [,2]     [,3]     [,4]     [,5]     [,6]
#> [1,] 357623.1 355193.4 356354.4 359252.9 363194.2 367833.3
#> 
#> [[2]]$upper
#>          [,1]     [,2]     [,3]     [,4]     [,5]     [,6]
#> [1,] 444219.3 480411.3 513012.7 543876.6 573697.6 602820.9