<- worldbankdata |>
a1 filter(Country == "Bangladesh") |>
filter(Year >= 2013 & Year <= 2021) |>
ggplot(aes(x = Year, y = Electricity)) +
geom_area(alpha = 0.5) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
scale_x_continuous(breaks = 2013:2021) +
labs(title = "a1: geom_area only")
<- worldbankdata |>
a2 filter(Country == "Bangladesh") |>
filter(Year >= 2013 & Year <= 2021) |>
ggplot(aes(x = Year, y = Electricity)) +
geom_area(alpha = 0.5) +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) +
scale_x_continuous(breaks = 2013:2021) +
geom_point(col = "red") +
labs(title = "a2: geom_area \n and geom_point")
| a2 a1
3 geom_a
3.1 geom_area
Package
ggplot2 (Wickham 2016)
Description
Create an area plot. This cover the space between x-axis and line that connects the data points.
Understandable aesthetics
required aesthetics
x
, y
optional aesthetics
alpha
, colour
, fill
, group
, linetype
, linewidth
See also
Example
3.2 geom_abline
Package
ggplot2 (Wickham 2016)
Description
Description Draw a straight line (\(Y=mX+c\)) for a given slope (\(m\)) and intercept (\(c\)).
Understandable aesthetics
Unlike most other geoms, geom_abline
does not depend on the x and y variables that we map for the main plot. geom_abline
has its own independent characteristics: intercept
and slope
.
See also
geom_point, geom_vline, geom_hline
Example
<- ggplot(worldbankdata, aes(y = Cooking, x = Electricity)) +
a1 geom_abline(intercept = 0, slope = 1) +
labs(title = "a1: geom_abline only") +
theme(aspect.ratio = 1)
<- ggplot(worldbankdata, aes(y = Cooking, x = Electricity)) +
a2 geom_abline(intercept = 0, slope = 1) +
geom_point() +
labs(title = "a2: geom_abline \n and geom_point") +
theme(aspect.ratio = 1)
| a2 a1
3.3 geom_alluvium
Package
ggalluvial(Brunson and Read 2019; Brunson 2020)
Description
Create alluvial plot. An alluvial plot is a type of diagram that is particularly useful for visualizing categorical data and the flow or transition between different categorical variables over multiple stages or categories
Understandable aesthetics
required aesthetics
x
, y
, ymin
, ymax
,
optional aesthetics
alpha
, colour
, fill
, linetype
, size
, group
(group is used internally; arguments are ignored)
See also
geom_stratum, geom_flow, geom_lode
Example
library(ggalluvial)
<- worldbankdata |>
freq.table select(Country, Region, Year, Income) |>
filter(Year > 2015) |>
group_by(Region, Year, Income) |>
summarise(n = n()) |>
drop_na()
freq.table
# A tibble: 153 × 4
# Groups: Region, Year [49]
Region Year Income n
<fct> <dbl> <fct> <int>
1 East Asia & Pacific 2016 LM 13
2 East Asia & Pacific 2016 UM 10
3 East Asia & Pacific 2016 H 14
4 East Asia & Pacific 2017 LM 13
5 East Asia & Pacific 2017 UM 10
6 East Asia & Pacific 2017 H 14
7 East Asia & Pacific 2018 LM 13
8 East Asia & Pacific 2018 UM 10
9 East Asia & Pacific 2018 H 14
10 East Asia & Pacific 2019 LM 12
# ℹ 143 more rows
<- freq.table |>
a1 ggplot(aes(y = n, axis1 = Region, axis2 = Year)) +
geom_alluvium(aes(fill = Income), width = 1 / 12) +
labs(title = "a1: geom_alluvium only")
<- freq.table |>
a2 ggplot(aes(y = n, axis1 = Region, axis2 = Year)) +
geom_alluvium(aes(fill = Income), width = 1 / 12) +
geom_stratum(width = 1 / 12, fill = "black", color = "grey") +
geom_label(stat = "stratum", aes(label = after_stat(stratum))) +
labs(title = "a2: geom_alluvium, \n geom_stratum and geom_label")
/ a2 a1
3.4 geom_arc
Package
ggforce(Pedersen 2022)
Description
Draw a circle or a segment of a circle.
Understandable aesthetic
required aesthetics
x0
- starting coordinate of x-axis , y0
- starting coordinate of x-axis, r
- radius, start
, end
optional aesthetics
color
, linewidth
, linetype
, alpha
, lineend
The statistical transformation to use on the data for this layer
stat_arc
See also
Example
library(ggforce)
ggplot() +
geom_arc(aes(x0 = 0, y0 = 0, r = 8, start = 1, end = 8)) +
geom_arc(aes(x0 = 0, y0 = 0, r = 8, start = 1, end = 5), col = "red", size = 2) +
theme(aspect.ratio = 1)
3.5 geom_arc_bar
Package
ggforce(Pedersen 2022)
Description
To draw pie chart and donut chart defining centre point, a radius and a start and end angle.
Understandable aesthetic
required aesthetics
x0
- starting coordinate of x-axis , y0
- starting coordinate of x-axis, r
- radius, start
, end
optional aesthetics
color
, linewidth
, linetype
, alpha
, lineend
The statistical transformation to use on the data for this layer
stat_arc
See also
Example
<- data.frame(
df state = c(
"A", "B", "C",
"D", "E"
),focus = c(0.2, 0, 0, 0, 0),
start = c(0, 1, 2, 3, 4),
end = c(1, 2, 3, 4, 2 * pi),
amount = c(4, 3, 1, 2, 5),
stringsAsFactors = FALSE
)ggplot(df) +
geom_arc_bar(aes(
x0 = 0, y0 = 0, r0 = 0, r = 1, amount = amount,
fill = state, explode = focus
stat = "pie") +
), scale_fill_brewer(palette = "Dark2") +
theme(aspect.ratio = 1)
##geom_arrow{#arrow}
Package
metR (Campitelli 2021)
Description
Understandable aesthetics
required aesthetics
x
y
optional aesthetics
arrow,type
, arrow.angle
, arrow.length
, arrow.ends
, arrow.type
See also
3.5.1 Example
library(metR)
Attaching package: 'metR'
The following object is masked from 'package:purrr':
cross
<- tibble(
data x = c(10, 20, 30, 40, 50), # Longitude or X-coordinates
y = c(1, 2, 3, 4, 5), # Latitude or Y-coordinates
dx = c(1, 0, -1, 0, 1), # Wind direction components (change in X)
dy = c(1, -1, 0, 1, 0) # Wind direction components (change in Y)
)
ggplot(data, aes(x = x, y = y)) +
geom_point(color = "#1b9e77", size = 3) +
geom_arrow(aes(dx = dx, dy = dy), color = "#d95f02", size = 1, arrow.type = "closed") +
labs(title = "Wind Directions at Different Locations", x = "Longitude", y = "Latitude")
3.6 geom_ash
Package
ggformula (Kaplan and Pruim 2023)
Description
Plotted Average Shifted Histogram (ASH)
Understandable aesthetics
required aesthetics
x
y
optional aesthetics
color
, fill
, bins
, alpha
, size
See also
Example
library(ggformula)
<- worldbankdata |>
p1 filter(Income == "LM") |>
ggplot(aes(x = Electricity)) +
geom_ash(bins = 20, color = "#d95f02") + labs("Average Shifted Histogram")
<- worldbankdata |>
p2 filter(Income == "LM") |>
ggplot(aes(x = Electricity)) +
geom_histogram(aes(y = stat(density)), color = "black", fill = "gray") +
geom_ash(bins = 20, color = "#d95f02") + labs("Histogram and Average Shifted Histogram")
|p2 p1