6  geom_d

6.1 geom_density

Package

ggplot2 (Wickham 2016)

Description

Computes and draws kernel density estimation.

Understandable aesthetics

required aesthetics

x, y

optional aesthetics

alpha, colour, fill, group, linetype, linewidth, weight

See also

geom_histogram

Example

worldbankdata |>
  ggplot(aes(x = Electricity)) +   geom_density()

6.2 geom_density_line

Package

ggridges (Wilke 2023)

Description

Draws a density plot same as geom_density. The difference is that the geom draws a ridgeline (line with filled area underneath).

Understandable aesthetics

required aesthetics

x

y

optional aesthetics

alpha, colour, fill, group, linetype, linewidth, weight

See also

geom_density

Example

library(ggridges)
worldbankdata |>
  ggplot(aes(x = Electricity)) +   
  geom_density_line()

6.3 geom_density_2d

Package

ggplot2 (Wickham 2016)

Description

Computes a 2D kernel density estimation using MASS::kde2d() and display the results with contours.

Understandable aesthetics

stat_density

required aesthetics

x

y

optional aesthetics

alpha, colour, group, linetype, linewidth

See also

geom_histofram

Example

a1 <- worldbankdata |>
  ggplot(aes(y = Cooking, x=Electricity)) +   
  geom_density_2d() +
  xlim(0, 100) +
  ylim(0, 100) +
  theme(aspect.ratio = 1) + 
  labs(title = "a1: geom_density_2d only")
a2 <- worldbankdata |>
  ggplot(aes(y = Cooking, x=Electricity)) +   
  geom_point() +
  geom_density_2d() +
  theme(aspect.ratio = 1) + 
  labs(title = "a2: geom_point and \n geom_density_2d") 
  
a1|a2

6.4 geom_density_2d_filled

Package

ggplot2 (Wickham 2016)

Description

Computes a 2D kernel density estimation using MASS::kde2d() and display the results with filled contour bands.

Understandable aesthetics

required aesthetics

x

y

optional aesthetics

alpha, colour, group, linetype, linewidth, subgroup

See also

geom_histogram

Example

a1 <- worldbankdata |>
  filter(Year == "2021") |>
  ggplot(aes(y = Cooking, x=Electricity)) +   
  geom_density_2d_filled() + 
  labs(title = "a1: geom_density_2d_filled only") + 
  theme( aspect.ratio = 1)
a2 <- worldbankdata |>
  filter(Year == "2020") |>
  ggplot(aes(y = Cooking, x=Electricity)) +   
  geom_density_2d_filled(alpha = 0.5) + 
    geom_point() + 
  labs(title = "a2: geom_point and \n geom_density_2d_filled") + 
  theme( aspect.ratio = 1)
a3 <- worldbankdata |>
  filter(Year == "2020") |>
  ggplot(aes(y = Cooking, x=Electricity)) +   
  geom_point(alpha=0.5) + 
  labs(title = "a3: geom_point") + 
  theme(aspect.ratio = 1)
a1 / a2 / a3

6.5 geom_density_ridges

Package

ggridges (Wilke 2023)

Description

Arranges multiple density plots in a staggered fashion.

Understandable aesthetics

required aesthetics

x, y

optional aesthetics

colour, fill, group, height, alpha, linetype, linewidth, scale, rel_min_height

See also

geom_density_ridges_gradient

Example

library(ggridges)
 worldbankdata |>
  ggplot(aes(y = Income, x=Electricity)) +   
  geom_density_ridges() 

6.6 geom_density_ridges_gradient

Package

ggridges (Wilke 2023)

Description

Arranges multiple density plots in a staggered fashion.

Understandable aesthetics

required aesthetics

x, y

optional aesthetics

colour, fill, group, height, alpha, linetype, linewidth, scale, rel_min_height

See also

geom_density_ridges

Example

library(ggridges)
 worldbankdata |>
  ggplot(aes(y = Income, x=Electricity, fill=stat(x))) +   
  geom_density_ridges_gradient() +
  scale_fill_viridis_c()

6.7 geom_dl

Package

directlabels (Hocking 2023)

Description

Display direct labels on the plot.

Understandable aesthetics

layer

See also

geom_text

Example

library(directlabels)
a1 <- worldbankdata |>
  ggplot(aes(y = Cooking, x=Electricity)) +   
  geom_point(aes(col=Income)) +
  theme(aspect.ratio = 1) +
  scale_color_brewer(palette = "Set1")
a1 +
  geom_dl(aes(label=Income), method="smart.grid")+
  scale_shape_manual(values=c(H = 1, 
                              UM = 6,
                              L = 3,
                              LM = 2),
                     guide="none")

6.8 geom_dotplot

Package

ggplot2 (Wickham 2016)

Description

Create dotplot.

6.8.1 Understandable aesthetics

required aesthetics

x or y

optional aesthetics

alpha, colour, fill , group, linetype, stroke

See also

geom_histogram

Example

worldbankdata |>
  ggplot(aes(x=Cooking)) +   
  geom_dotplot(binwidth = 1) + 
  theme(legend.position="none", aspect.ratio = 1)

6.9 geom_delaunay_tile

Package

ggforce (Pedersen 2022)

Description

Display voronoi tesselation and delaunay triangulation.

Understandable aesthetics

required aesthetics

x or y

optional aesthetics

alpha, colour, fill , linetype, size

See also

geom_delaunay_segment

Example

library(ggforce)
library(deldir) #to calculate delaunay triangulation
a1 <- worldbankdata |>
  filter(Income == "L") |>
  ggplot(aes(x=Cooking, y=Electricity)) +   
  geom_delaunay_tile(alpha=0.5) + 
  labs(title = "a1: geom_delaunay_tile only") +
  theme(aspect.ratio = 1)

a2 <- worldbankdata |>
  filter(Income == "L") |>
  ggplot(aes(x=Cooking, y=Electricity)) +   
  geom_point() +
  geom_delaunay_tile(alpha=0.5) + 
  labs(title = "a2: geom_point and \n geom_delaunay_tile") +
  theme(aspect.ratio = 1)
a1 | a2

6.10 geom_delaunay_segment

Package

ggforce (Pedersen 2022)

Description

Display voronoi tesselation and delaunay triangulation.

Understandable aesthetics

required aesthetics

x or y

optional aesthetics

alpha, colour, fill , linetype, size

See also

geom_delaunay_tile

Example

library(ggforce)
library(deldir) #to calculate delaunay triangulation

a1 <- worldbankdata |>
  filter(Income == "L") |>
  ggplot(aes(x=Cooking, y=Electricity)) +   
  geom_delaunay_segment() + 
  theme(aspect.ratio = 1) +
  labs(title = "a1: geom_delaunay_segment only") 

a2 <- worldbankdata |>
  filter(Income == "L") |>
  ggplot(aes(x=Cooking, y=Electricity)) +   
  geom_point() +
  geom_delaunay_segment() + 
  theme(aspect.ratio = 1) +
  labs(title = "a2: geom_point and \n geom_delaunay_segment") 

a1 | a2

6.11 geom_delaunay_segment2

Package

ggforce (Pedersen 2022)

Description

Display voronoi tesselation and delaunay triangulation.

Understandable aesthetics

required aesthetics

x or y

optional aesthetics

alpha, colour, fill , linetype, size

See also

geom_delaunay_tile

Example

library(ggforce)
library(deldir) #to calculate delaunay triangulation

a1 <- worldbankdata |>
  filter(Income == "L") |>
  ggplot(aes(x=Cooking, y=Electricity)) +   
  geom_delaunay_segment2() + 
  theme(aspect.ratio = 1) +
  labs(title = "a1: geom_delaunay_segment2 only") 

a2 <- worldbankdata |>
  filter(Income == "L") |>
  ggplot(aes(x=Cooking, y=Electricity)) +   
  geom_point() +
  geom_delaunay_segment2() + 
  theme(aspect.ratio = 1) +
  labs(title = "a2: geom_point and \n geom_delaunay_segment2") 

a1 | a2

6.12 geom_dumbbell

Package

ggalt(Rudis, Bolker, and Schulz 2017)

Description

Create dumbbell charts.

Understandable aesthetics

required aesthetics

x, y, xend, yend

optional aesthetics

alpha, colour, group, linetype, size

See also

geom_segment

Example

library(ggalt)
df <- worldbankdata |>
  group_by(Income) |>
  summarise(min = min(Electricity, na.rm=TRUE), max = max(Electricity, na.rm=TRUE))
df
# A tibble: 5 × 3
  Income   min   max
  <fct>  <dbl> <dbl>
1 L       2.11  99.8
2 LM      3.81 100  
3 UM     26.5  100  
4 H      65.9  100  
5 <NA>   17.8  100  
ggplot(df, aes(y=Income, x=min, xend=max)) +
  xlab("Electricity Range") + 
  geom_dumbbell(color = "darkgray",  # Color of the line between min and max
                size = 3,            # Line width
                dot_guide = FALSE,   # Whether to add a guide from origin to X or not
                size_x = 3,          # Size of the X point
                size_xend = 3,       # Size of the X end point
                colour_x = "#762a83",    # Color of the X point
                colour_xend = "#1b7837")   # Color of the X end point 

Hocking, Toby Dylan. 2023. Directlabels: Direct Labels for Multicolor Plots. https://CRAN.R-project.org/package=directlabels.
Pedersen, Thomas Lin. 2022. Ggforce: Accelerating ’Ggplot2’. https://CRAN.R-project.org/package=ggforce.
Rudis, Bob, Ben Bolker, and Jan Schulz. 2017. Ggalt: Extra Coordinate Systems, ’Geoms’, Statistical Transformations, Scales and Fonts for ’Ggplot2’. https://CRAN.R-project.org/package=ggalt.
Wickham, Hadley. 2016. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org.
Wilke, Claus O. 2023. Ggridges: Ridgeline Plots in ’Ggplot2’. https://CRAN.R-project.org/package=ggridges.