<- worldbankdata |>
p1 filter(Country == "Sri Lanka" ) |>
filter(Year >= 2013 & Year <= 2021) |>
ggplot(aes(x=Year, y=Electricity)) +
geom_point() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
scale_x_continuous(breaks = 2000:2021) +
ggtitle("geom_point_only")
<- worldbankdata |>
p2 filter(Country == "Sri Lanka" ) |>
filter(Year >= 2013 & Year <= 2021) |>
ggplot(aes(x=Year, y=Electricity)) +
geom_smooth() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
scale_x_continuous(breaks = 2000:2021) +
ggtitle("geom_smoth_only")
<- worldbankdata |>
p3 filter(Country == "Sri Lanka" ) |>
filter(Year >= 2013 & Year <= 2021) |>
ggplot(aes(x=Year, y=Electricity)) +
geom_point() +
geom_smooth() +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
scale_x_continuous(breaks = 2000:2021) +
ggtitle("geom_point + geom_smooth: loess")
<- worldbankdata |>
p4 filter(Country == "Sri Lanka" ) |>
filter(Year >= 2013 & Year <= 2021) |>
ggplot(aes(x=Year, y=Electricity)) +
geom_point() +
geom_smooth(method = "lm") +
theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
scale_x_continuous(breaks = 2000:2021) +
ggtitle("geom_point + geom_smooth:lm")
+ p2)/(p3+p4) (p1
21 geom_s
21.1 geom_smooth
Package
ggplot2 (Wickham 2016)
Description
Add a smooth curve or line to a scatter plot for visulizing trend between x and y variable.
See also
Understandable aesthetics
- Required aesthetics
- x, y
- Optional aesthetics
- alpha, colour, fill, group, linetype, linewidth, weight, ymax, ymin
The statistical transformation to use on the data for this layer
- smooth
Example
21.2 geom_segment
Package
ggplot2 (Wickham 2016)
Description
Add a straight line segment between two points.
Understandable aesthetics
- Required aesthetics
- x, y, xend or yend
- Optional aesthetics
- alpha, colour, group, linetype, linewidth
The statistical transformation to use on the data for this layer
- identity
See Also
- geom_curve(), geom_path(), geom_line(), geom_spoke()
Examples
Example 1: simulated data
<- ggplot() +
p1 geom_segment(aes(x = 3, y = 4, xend = 25, yend = 25)) +
theme_minimal() +
coord_cartesian(ylim = c(0, 30), xlim = c(0, 30)) +
theme_bw()+
ggtitle("geom_segment_only")
<- data.frame(
data x_start = c(1.5, 2.6, 4.1, 5.1),
y_start = c(1.2, 2, 2.2, 2.8),
x_end = c(2.6, 4.1, 5.1, 6),
y_end = c(2, 2.2, 2.8, 4))
<- ggplot(data) +
p2 geom_segment(aes(x = x_start, y = y_start, xend = x_end, yend = y_end),
color = "black", size = 0.5,
arrow = arrow(type = "closed", length = unit(0.2, "inches"))) +
labs(x = "X Axis",
y = "Y Axis") +
ggtitle("geom_segment with direction")
+p2 p1
Example 2: Application data
<- worldbankdata |>
SL_segments filter(Country == "Sri Lanka" & Year > 2013) |>
mutate(
x_end = lead(Year),
y_end = lead(Electricity)
|>
) filter(!is.na(x_end) & !is.na(y_end))
ggplot(SL_segments) +
geom_segment(aes(x = Year, y = Electricity, xend = x_end,
yend = y_end),
color = "blue", size = 0.5, arrow = arrow(type = "closed", length = unit(0.2, "inches"))) +
labs(x = "Year",
y = "Electricity Consumption",
title = "Sri Lanka Electricity Consumption Over Time (geom_segment)")
21.3 geom_spoke
Package
ggplot2 (Wickham 2016)
Description
- Creates radial line segments (spokes) from a central point, where each spoke is defined by its angle and radius. This is useful for visualizing directions or vectors.
Understandable aesthetics
- Required aesthetics
- x, y, angle, radius
- Optional aesthetics
- alpha, colour, group, linetype, linewidth
The statistical transformation to use on the data for this layer
- identity
Examples
Example: Simulated data
set.seed(8)
<- tibble(
data x = runif(10, 1, 10), # Random x-coordinates
y = runif(10, 1, 10), # Random y-coordinates
angle = runif(10, 0, 2 * pi), # Random angles in radians
radius = runif(10, 0.5, 2) # Random lengths for spokes
)
ggplot(data, aes(x = x, y = y)) +
geom_spoke(aes(angle = angle, radius = radius),
color = "blue", size = 0.5) +
labs(x = "X-Axis",
y = "Y-Axis",
title = "geom_spoke")
Example: Practical application data
<- worldbankdata |>
SL filter(Country == "Sri Lanka" & Year > 2013)
# Prepare the data for geom_spoke
<- SL |>
SL_segments mutate(
x_end = lead(Year), # Next year
y_end = lead(Electricity) # Next year's electricity value
|>
) filter(!is.na(x_end) & !is.na(y_end)) |>
mutate(
angle = atan2(y_end - Electricity, x_end - Year), # Angle in radians
radius = sqrt((x_end - Year)^2 + (y_end - Electricity)^2) # Euclidean distance
)
# Plot with geom_spoke
ggplot(SL_segments, aes(x = Year, y = Electricity, color=as.factor(Year))) +
geom_spoke(aes(angle = angle, radius = radius), size = 1) +
scale_color_brewer(type = "qual", palette = 2) +
labs(x = "Year",
y = "Electricity Consumption",
title = "Sri Lanka Electricity Consumption Over Time (geom_spoke)")
21.4 geom_step
Package
ggplot2 (Wickham 2016)
Description
- Create stairstep plot: Connect observations in the order in which they appear in the data by stairs.
Understandable aesthetics
- Required aesthetics
- x, y
- Optional aesthetics
- alpha, colour, group, linetype, linewidth
The statistical transformation to use on the data for this layer
- identity
See Also
- geom_path(), geom_line(), geom_polygon(), geom_segment()
Example
<- worldbankdata |>
p1 filter(Country == "Bangladesh") |>
filter(Year >= 2013 & Year <= 2021) |>
ggplot(aes(x=Year, y=Electricity)) +
geom_point() +
scale_x_continuous(breaks = 2013:2021) +
ggtitle("geom_point only")
<- worldbankdata |>
p2 filter(Country == "Sri Lanka") |>
filter(Year >= 2013 & Year <= 2021) |>
ggplot(aes(x=Year, y=Electricity)) +
geom_step(color = "red", size = 1) +
scale_x_continuous(breaks = 2013:2021) +
ggtitle("geom_step only")
+ p2 p1
21.5 geom_sf
Package
ggplot2 (Wickham 2016)
Description
- Visualize sf objects.
Understandable aesthetics
- Required aesthetics
- simple feature geometry
- Optional aesthetics
- alpha, colour, group, fill
The statistical transformation to use on the data for this layer
- sf
See Also
- geom_sf_label(), geom_sf_text()
Example
library(rnaturalearth)
library(rnaturalearthdata)
# Load world spatial data
<- ne_countries(scale = "medium", returnclass = "sf")
world
<- worldbankdata |> filter(Year == 2020)
electricity_data <- world |>
world_electricity left_join(electricity_data, by = c("name" = "Country"))
ggplot(data = world_electricity) +
geom_sf(aes(fill = Electricity), color = "black", size = 0.1) +
scale_fill_viridis_c(option = "plasma", na.value = "grey90") +
labs(
title = "Percentage of Population Access to Electricity by Country",
fill = "Electricity")
21.6 geom_sf_label
Package
ggsflabel (Yutani 2024)
# install.packages("devtools")
::install_github("yutannihilation/ggsflabel") devtools
Description
- Add text labels to spatial features in a plot created with geom_sf()
Understandable aesthetics
- Required aesthetics
- label
- Optional aesthetics
- alpha, colour, group, fill
The statistical transformation to use on the data for this layer
- sf_coordinates
See Also
- geom_sf(), geom_sf_text()
Example
library(rnaturalearth)
library(rnaturalearthdata)
# Load world spatial data
<- ne_countries(scale = "medium", returnclass = "sf")
world
<- worldbankdata |> filter(Year == 2020)
electricity_data <- world |>
world_electricity left_join(electricity_data, by = c("name" = "Country"))
<- world_electricity |> head(10)
countries_to_label
ggplot(data = world_electricity) +
geom_sf(aes(fill = Electricity), color = "black", size = 0.1) +
geom_sf_label(data = countries_to_label, aes(label = name), size = 3, label.padding = unit(0.1, "lines")) +
scale_fill_viridis_c(option = "plasma", na.value = "grey90") +
labs(
title = "Percentage of Population Access to Electricity by Country",
fill = "Electricity")
21.7 geom_sf_text
ggsflabel (Yutani 2024)
# install.packages("devtools")
::install_github("yutannihilation/ggsflabel") devtools
Description
- Add text labels to spatial features in a plot created with geom_sf() without the background box. It is a similar approach as with geom_sf_label().
Understandable aesthetics
- Required aesthetics
- label
- Optional aesthetics
- alpha, colour, group, fill
The statistical transformation to use on the data for this layer
- sf_coordinates
See Also
- geom_sf(), geom_sf_label()
Example
library(rnaturalearth)
library(rnaturalearthdata)
# Load world spatial data
<- ne_countries(scale = "medium", returnclass = "sf")
world
<- worldbankdata |> filter("Year" == 2020 )
electricity_data <- world |>
world_electricity left_join(electricity_data, by = c("name" = "Country"))
<- world_electricity |> head(10)
countries_to_label
ggplot(data = world_electricity) +
geom_sf(aes(fill = Electricity), color = "black", size = 0.1) +
geom_sf_text(data = countries_to_label, aes(label = name), size = 3, label.padding = unit(0.1, "lines")) +
scale_fill_viridis_c(option = "plasma", na.value = "grey90") +
labs(
title = "Percentage of Population Access to Electricity by Country",
fill = "Electricity")
21.8 geom_sf_pattern
Package
ggpattern (FC, Davis, and ggplot2 authors 2023)
Description
- Add patterns to the map.
Understandable aesthetics
- Required aesthetics
- NuULL
- Optional aesthetics
- alpha, colour, group, fill
The statistical transformation to use on the data for this layer
- sf_coordinates
Example
library(rnaturalearth)
library(rnaturalearthdata)
library(ggpattern)
# Load world spatial data
<- ne_countries(scale = "medium", returnclass = "sf")
world
<- worldbankdata |> filter("Year" == 2020)
electricity_data <- world |>
world_electricity left_join(electricity_data, by = c("name" = "Country"))
ggplot(data = world_electricity) +
geom_sf_pattern(aes(fill = Electricity, pattern = is.na(Electricity)),
color = "black",
size = 0.1,
pattern_fill = "gray80",
pattern_angle = 45,
pattern_density = 0.1) +
scale_fill_viridis_c(option = "plasma", na.value = "white") +
labs(
title = "Global Electricity Access with Patterns for Missing Data",
fill = "Electricity (GWh)"
)